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Abstract 
 Despite significant advances in named entity 
extraction technologies, state-of-the-art extraction 
tools achieve insufficient accuracy rates for practical 
use in many operational settings. However, they are 
not all prone to the same types of error, suggesting 
that substantial improvements may be achieved via 
appropriate combinations of existing tools, provided 
their behavior can be accurately characterized and 
quantified. Previously developed aggregation meth-
odologies primarily focus upon naïve voting 
methods, which implicitly assign equal weight to 
their constituent extractors. Other more sophisticated 
approaches that utilize a fine-grained error space to 
characterize entity extractor performance do not lend 
themselves naturally to a model of joint extractor 
behaviors. In this paper, we present an inference 
framework that leverages the joint characteristics of 
their error processes via a pattern-based representa-
tion of extracted entity data. This approach has been 
shown to produce statistically significant improve-
ments in entity extraction relative to standard 
performance metrics and to mitigate the weak per-
formance of entity extractors operating under 
suboptimal conditions. Moreover, this aggregation 
methodology provides a framework for quantifying 
uncertainty in extracted entity output, and it can 
readily adapt to sparse data conditions. 
 

Keywords: Knowledge discovery, text mining, 
named entity extraction, probabilistic aggregation, 
ensemble learning 

 

1 Introduction 
Since the 1980s, the sophistication of machine 

learning and computer technologies has increased 
dramatically, enabling the development of solutions 
to a wide variety of challenges facing the Natural 
Language Processing (NLP) community. These 
problems range from the development of search en-
gines that can interpret simple natural language 
queries to the construction of knowledge discovery 
systems predicated upon reliable information extrac-

tion from heterogeneous data sources. Knowledge 
discovery systems are of particular interest to com-
mercial, industrial and government organizations 
that rely upon computer processing to perform 
transactions; evaluate consumer demands; and, in 
general, to draw conclusions and make decisions 
that depend upon an extensive and reliable knowl-
edge base. Often, the construction of such a 
knowledge base depends to a large degree upon the 
automatic recognition and extraction of complex 
relational information and, more fundamentally, 
related named entities (e.g., people, organizations) 
from a collection, or corpus, of text documents (e.g., 
e-mail, news articles, medical records, weblogs, in-
telligence reports). Consequently, the fidelity of 
knowledge discovery systems is particularly suscep-
tible to errors introduced during the automatic 
extraction process. 

However, even state-of-the-art entity extraction 
tools are vulnerable to variations in (1) the source 
and domain of a corpus and its adherence to conven-
tional lexical, syntactical, and grammatical rules; (2) 
the availability and reliability of manually annotated 
data; and (3) the complexity of entity types targeted 
for extraction. Under these and other challenging 
conditions, extractors produce a range of interde-
pendent errors that mangle entity output and often 
fail to achieve high accuracy rates in operational 
settings. However, many extraction technologies, 
distinguished by the nature of their underlying algo-
rithms, possess complementary characteristics that 
may be combined to selectively amplify their most 
attractive attributes (e.g., low miss or false alarm 
rates) and mitigate their respective weaknesses.  

Many extractor combination methods that aim 
to leverage these characteristics have relied upon 
variations of a “voting” mechanism (e.g., majority 
vote [1]). In practice, such approaches often fall 
short, as they depend heavily upon the number and 
type of extractors chosen, and they do not account 
for variations in the underlying extraction algorithms 
and the differing characteristics of their errors. 
Moreover, such systems tend to be limited in their 
ability to assess uncertainty, a critical capability for 
evaluating reliability in downstream analysis and 



decision-making. Proposed enhancements to the 
basic voting mechanism include, but are not limited 
to, weighting of the constituent (i.e., base) extrac-
tors’ output [2]; stacking of entity extractors [3]-[5]; 
establishing a vote “threshold” [6]; and bagging of 
entity data [7]. 

Even more sophisticated combination tech-
niques, such as that described in [8], fail to 
adequately account for text within a local neighbor-
hood of a word of interest. Indeed, a method based 
on the Conditional Random Field (CRF) model pre-
sented by [9] demonstrated that performance may be 
enhanced by incorporating the classification struc-
ture of nearby words. More recently, Lemmond, et 
al. [10] utilized a fine-grained hierarchical error 
space to characterize named entity extractors’ error 
processes and aggregate their output entity data ac-
cordingly. 
 The aggregation methodology described in this 
paper, called the pattern-based meta-extractor 
(PME), utilizes a pattern-based representation of 
named entity data to evaluate the joint performance 
characteristics of its base entity extractors. The re-
sulting characterization is utilized to determine the 
most likely truth, given base extractor output.  
 Section 2 of this paper describes this novel pat-
tern representation, along with its use in 
characterizing base extractor performance and ag-
gregating entity output. In Section 3, we discuss 
enhancements that enable the PME to adapt to 
sparse data conditions. Finally, experimental results 
are presented and discussed in Section 4, with con-
clusions and future research given in Section 5. 

2 Extractor Characterization 
In the following discussion, we assume that an 

entity can be expressed as a text string (i.e., name) 
that is associated with a location1 in the source text. 
To enable the characterization of base extractor per-
formance, we assume an annotated set of documents 
is available (distinct from those used for training) to 
serve as an “evaluation corpus” for the base extrac-
tors2. The ground truth entity data, G, consists of the 
true (i.e., manually annotated) entities identified in 
the evaluation corpus. The meta-extractor aggregates 
the output of  base entity extractors, where 

� 

Dk  
denotes the output of extractor k relative to a corpus. 
                                                

1 We express the location of a text string in terms of its start 
and end offsets relative to the first character in the corpus.  

2 Three distinct corpora are required for: (1) training the 
base extractors; (2) evaluating their performance, and thereby 
training the meta-extractor; (3) testing the meta-extractor. 

When the locations of a ground truth entity and an 
extracted entity intersect, we say that the entities 
overlap3.  

2.1 The Pattern Representation 
Named entity extractors leverage different 

methodologies that can be coarsely partitioned into 
three fundamental types: rule-based, statistical and 
heuristic. Despite their algorithmic differences, their 
common objective is to correctly extract fragments 
from text that represent real-world entities, such as 
people, organizations, or locations. At a high level, 
this task may be regarded as a three-stage process in 
which an extractor (in some prescribed order) must 
detect a reference to an entity in a document, identify 
the offsets that delineate the name of a detected en-
tity, and classify it as to its type. We focus chiefly on 
the first two stages in this paper. 

Many of the most effective extractors are pro-
prietary, and hence, direct analysis of the 
characteristic error processes of their underlying 
algorithms is often infeasible. Therefore, we choose 
to treat each extractor as a “black box”. However, 
when the base entity extractors are applied to a cor-
pus for which the ground truth, G, is known, 
mistakes in their output, 

� 

Dk , represent an observable 
transformation of the truth that is driven by their 
underlying error processes. In [10], this transforma-
tion was described in terms of a hierarchical error 
space relative to which the behaviors of each base 
extractor could be explicitly quantified. Despite the 
independence assumptions used in that study, the 
resulting meta-extractor achieved significant im-
provements over the performance of its base entity 
extractors. The PME methodology aims to further 
enhance these performance gains by relaxing those 
assumptions when sufficient data are available. Spe-
cifically, the PME utilizes an encoding of the 
combined base extractor output, D, that encodes the 
joint characteristics of the extractors’ output and 
resultant errors.  

To lay a foundation for this encoding, we revisit 
a construct originally proposed in [10] called the 
meta-entity. This meta-extraction methodology as-
sumed that when the base extractors are applied to a 
corpus for which ground truth is unknown, their 
combined entity output at a given location in the 
corpus encapsulates all available information regard-
ing the corresponding underlying ground truth.  

                                                
3 We generally assume that ground truth entities do not 

overlap and that the entities extracted by extractor k do not over-
lap. 



Hence, to facilitate discovery of the truth, mutu-
ally overlapping entities output by the K base 
extractors may be concatenated to form a meta-
entity, which in turn can be used to generate a space 
of hypotheses over the ground truth. For example, in 
Figure 1, the extracted data within each rectangle 
can be concatenated to form two distinct meta-
entities consisting of the following fragments of 
text: 
 

(i) “President Obama” 
(ii) “Edward M. Liddy of the American Inter-

national Group” 
 

This meta-entity concept, as summarized above, 
forms the basis for the PME encoding.  

Let 

� 

Dmk  denote the entity output of base extrac-
tor k used to form meta-entity m, and let 
  

� 

Dm = {Dm1,…,DmK } . Note that 

� 

Dm  consists of the 
K-way joint entity output of the K base extractors 
and possesses a distinctive structure that can be 
characterized by the boundaries of its individual 
entities. Specifically, the locations of its entity 
boundaries collectively define a K-way pattern, 

� 

dm, 
relative to m that can be encoded numerically via the 
following process (illustrated in Figure 2): 
 
(A) Meta-entity m is partitioned into s segments 

terminating at the 

� 

s + 1 unique entity boundaries 
in 

� 

Dm . 
(B) For each extractor k, a string of length s (a sim-

ple4 pattern denoted 

� 

dmk ) is constructed, in 
which “2” indicates the beginning of an entity, 
“1” represents the middle or end of an entity, 
and “0” indicates that the segment was not ex-
tracted by extractor k. 

(C) We represent the K-way pattern corresponding 
to the segmented meta-entity m by 
  

� 

dm = {dm1,…,dmK } . 
 
Note that this segmentation strategy is motivated by 
the assumption that, if two words in the meta-entity 
remain “unbroken” by the base extractors (e.g., 
“American International” in Figure 2), then they 
most likely remain unbroken in ground truth. That 
is, either they appear together within a single ground 
truth entity, or they do not appear in the ground truth 
at all. When this assumption holds, the likelihood 
                                                
4 A 1-way pattern is also referred to as a simple pattern. 

that the truth will be discovered may increase, due to 
a simplification of the patterns involved. There is an 
implicit tradeoff, however, in that when this condi-
tion fails to hold, the truth can never be determined. 
Empirically, we have found that such cases are fairly 
rare, and on balance, the performance of the PME 
appears to benefit from this assumption.  

When the ground truth, 

� 

Gm , associated with a 
meta-entity m is known and the above assumption is 
satisfied, an analogous simple pattern representation 
of ground truth can be derived from the meta-entity 
segmentation. For example, in Figure 2, the ground 
truth is given by 

� 

Gm  = {“Edward M. Liddy”, 
“American International Group”}, and its associated 
pattern is given by 

� 

gm = (21021) . Note that, relative 
to a given segmented meta-entity m, any simple pat-
tern having the same number of segments as m is 
invertible; that is, it can be readily decoded to reflect 
the underlying entity data that it represents.  

2.2 The Pattern Dictionary 
The pattern-based encoding described in the 

previous section, by definition, relies solely on the 
joint structure of the entity data being encoded rela-
tive to a given segmented meta-entity. This is by 
design; many application domains require language 
independent extraction tools. Consequently, a par-
ticular K-way pattern of extracted data may be 
repeatedly observed in a corpus regardless of the 
actual text involved in the associated meta-entities. 
For example, in Figure 3, the extracted data are as-
sociated with a joint pattern identical to that shown 
in Figure 2. Notice, however, that although the ex-
tracted data for these two examples give rise to the 
same encoding, their associated ground truths differ. 
In particular, the ground truth in Figure 3 is given by 

� 

Gm  ={“Joe Biden”, “Delaware”}, with the associ-

 
Fig. 1. Meta-entities formed from extracted data: “President Obama”, “Edward M. Liddy of the American International Group”.  
 

 
Fig. 2. The pattern-based encoding associated with extracted 
data relative to a meta-entity. 
 



ated pattern 

� 

gm = (02002) . Hence, it is readily ap-
parent that a particular pattern of extracted data, , 
may be associated with many different ground truth 
patterns; in fact, the total number as of unique 
ground truth hypotheses that may be encoded for a 
meta-entity of length s segments is given by 

� 

a0 = 1, a1 = 2, as = 3as−1 − as−2 . This leads to a2 = 5, 
a3 = 13, a4 = 34, a5 = 89, and so on.  Clearly, only a 
subspace of the possible encodings will be observed 
in the training data for long patterns. Indeed, in prac-
tice, as pattern length increases, the relative size of 
this observed subspace shrinks rapidly. Some impli-
cations of this behavior will be discussed in later 
sections. 

In an operational setting, the base entity extrac-
tors are applied to a corpus for which ground truth is 
unknown. With access to only the extracted entity 
output of its K extractors, the PME must determine 
the most likely ground truth (i.e., the set of true 
named entities, G)5. This process involves (1) form-
ing a collection of meta-entities from the extractor 
output, , and (2) for each meta-entity m, determin-
ing the ground truth hypothesis (i.e., pattern) that is 
most plausible in a Bayesian sense among the as 
possible hypotheses. We will show that the optimal 
ground truth hypothesis 

� 

Hm
* , given 

� 

Dm , is that most 
                                                
5 To address the efficiency requirements of many real-
world (e.g., streaming text) applications, we assume that 
the source text cannot directly be accessed in this task. 

frequently associated with the K-way pattern  in 
the evaluation data set. 

Evaluation of base extractor performance rela-
tive to an annotated data set consists of constructing 
a database, or pattern dictionary, from the evalua-
tion data that stores counts of observed ground truth 
patterns for each K-way pattern derived from the 
extracted data. For example, a final entry in the pat-
tern dictionary might resemble that shown in Figure 
4 for the 2-way pattern presented in Figures 2 and 3. 

Consider a particular meta-entity m of size s 
having the K-way pattern 

� 

dm and unknown ground 
truth. Let 

� 

θ1,...,θ n ( θ j = 1)∑  denote the respective 
probabilities of the 

� 

n = as  hypothesized ground 
truths, 

� 

Hm1,...,Hmn . Suppose there are a total of 

� 

N = N (K ) ≥ 1  occurrences in the pattern dictionary 
of the pattern . Since the corresponding collec-
tion of N meta-entities may be regarded as a random 
sample from the population which generates the 
pattern 

� 

dm, the resulting pattern dictionary counts, 
i.e., the observed frequencies 

� 

f1,..., fn ( f j = N )∑  of 
the set of possible ground truths, may be modeled as 
following a multinomial distribution. The frequency 

� 

f j  may be viewed as the number of “votes” for the 
ground truth hypothesis 

� 

Hmj .  
The conjugate prior for the multinomial distri-

bution is the Dirichlet distribution, 

� 

D(α1,...,α n ) , 
where the parameter 

� 

α j  is essentially the number of 
a priori votes for hypothesis 

� 

Hmj . For our applica-
tion, we have used a noninformative Dirichlet prior, 
i.e.,   

� 

α1 = =α n = 1/n , which, in effect, splits a 
single a priori vote evenly among the candidate 
ground truths. 
       The posterior distribution of 

� 

θ1,...,θ n  then, 
given the observed frequencies 

� 

f1,..., fn , is 

� 

D(1/n + f1,...,1 /n + fn ) . These frequencies have the 
effect of updating the number of votes for hypothe-
sis 

� 

Hmj  to 

� 

1/n + f j . Hence, the marginal posterior 
distribution of 

� 

θ j  is the beta distribution with pa-
rameters 

� 

Aj =α j + f j = 1/n + f j  and  

� 

Bj = α i∑ + f i∑ − (α j + f j ) = 1+ N − (1/n + f j ) . It 
is this distribution that should be used to model the 
credibility of the hypothesized ground truth 

� 

Hmj . In 
particular, the posterior mean for 

� 

θ j  is given by 
 

  

� 

˜ θ j = E θ j f1,…, fn( ) =
1/n + f j

1 + N

=
1

1 + N
1
n

+
N

1 + N
f j
N

,
 

 

 
Fig. 3. The joint pattern representation for a different 
collection of extracted data, identical to that in Figure 2. 
 

Fig. 4. Example pattern dictionary entry. 
 



which is a weighted average of the prior mean, 1/n, 
for 

� 

θ j  and the sample proportion, 

� 

ˆ θ j = f j /N , of 
observed patterns associated with 

� 

Hmj . The weight 
1/(1 + N) represents the fraction of evidence coming 
from the prior.  
       The Bayesian optimum ground truth hypothesis 

� 

Hm
*  is the 

� 

Hmj  that maximizes the posterior mean 

� 

˜ θ j . Moreover, it is apparent from the formulation 
that it is equivalent to maximize 

� 

ˆ θ j . Hence, the op-
timal hypothesis is simply that most frequently 
associated with the K-way pattern 

� 

dm in the evalua-
tion data set, easily determined via the pattern 
dictionary.  
       In some applications of this technology, analysts 
may wish to consider some sub-optimal hypotheses 
having relatively high measures of plausibility. Can-
didate hypotheses 

� 

Hmj  may be ranked equivalently 
by 

� 

˜ θ j  or 

� 

ˆ θ j , although as a point estimate of credibil-
ity,

� 

˜ θ j  serves as the preferred figure of merit in the 
Bayesian paradigm. In addition, estimate uncertainty 
may be quantified by means of a Bayesian interval 
for 

� 

θ j  based upon its beta posterior (easily con-
structed from the inverse cumulative beta 
distribution).  

The Bayesian interval, by capturing a specified 
portion of the posterior distribution, provides a range 
of plausible values. For example, an 80% Bayesian 
interval can be defined to capture the central 80% of 
the distribution by extending from the 10th to the 90th 
percentile. In instances of sparseness of relevant 
pattern data (small N), in order to get reasonably 
short ranges, lower probability Bayesian intervals 
(e.g., 50%) may be used. A useful list for an analyst 
would display the posterior mean and associated 
Bayesian interval for the top hypotheses. 

Since a K-way extracted pattern may be associ-
ated with many different ground truths, it is natural 
at this point to question the use of structure alone in 
attempting to discover the truth. Indeed, the use of 
gazetteers, lexicons, stop-word lists and other com-
monly employed language-specific tools would 
undoubtedly enhance performance in some cases. 
However, since we are motivated by a practical need 
for language-independent systems, our goal in this 
work is to optimize performance in the absence of 
linguistic and semantic knowledge.  

3 Unprecedented Patterns 
When new extractor output 

� 

Dm  is encountered 
in the field, it may happen that the associated K-way 
pattern, 

� 

dm, was not observed in the evaluation data 

set and, consequently, cannot be found in the pattern 
dictionary (

� 

N (K ) = 0 ). Under conditions in which 
(1) the evaluation data set is of large enough size; 
(2) there are few base extractors under considera-
tion; and/or (3) the base extractors exhibit similar 
behaviors with regard to extraction errors, this phe-
nomenon is not frequently observed. Unfortunately, 
in practice, these conditions often do not hold, and 
hence, we present two enhancements of the PME 
that enable it to adapt to these challenging condi-
tions. 

3.1 Stepping Down 
The K-way pattern described above is essen-

tially a joint model over the K extractors and their 
corresponding behavior with respect to a given 
meta-entity. It is reasonable to assume that the pat-
tern algorithm, if necessary, can utilize progressively 
weaker marginal models in an effort to capture some 
patterns that would not otherwise be observed. We 
call this process "stepping down". 

Stepping down involves reducing the number of 
extractors represented by the patterns in the diction-
ary in an effort to increase the likelihood that a given 
joint pattern will have been observed. This means 
that, in building the pattern dictionary, we must ad-
ditionally store counts of observed ground truth 
patterns for each k-way pattern derived from the 
extracted data, 1 ≤ k ≤ K - 1. During operation of the 
PME, when a K-way pattern cannot be found in the 
dictionary, frequencies of these smaller k-way pat-
terns, 

� 

k < K , are used to determine plausible ground 
truth. The particular value of k employed will be 
referred to as the stepping down level.  

Here, we focus chiefly upon two approaches to 
implementing this stepping down procedure. 

Simple k-way decision 
A straightforward implementation of stepping 

down involves querying the dictionary for all possi-
ble k-way patterns, for successively smaller k, 

� 

k < K
, until one or more patterns is found. A K-way pat-

tern 

� 

dm induces 

� 

T = K
k

⎛ 
⎝ 
⎞ 
⎠  k-way patterns 

� 

dmt , t = 1, 

…, T, according to the combination of extractors 
represented. As shown in Figure 5, each k-way pat-
tern 

� 

dmt  and its associated ground truth patterns are 
reconfigured, if necessary, to comply with the seg-
mentation induced by the s-segment K-way pattern 

� 

dm. Again, let 

� 

θ1,...,θ n  denote the respective prob-
abilities of the 

� 

n = as  possible ground truths, 

� 

Hm1,...,Hmn . Suppose there are a total of Nt ≥ 0 oc-
currences in the pattern dictionary of the pattern dmt, 



with 

� 

N = N (k) = Nt ≥ 1∑ . Since we regard the cor-
responding collection of N meta-entities as a random 
sample from the population which generates patterns 
from 

  

� 

dmtt , the resulting pattern dictionary counts, 
i.e. the observed frequencies f1, …, fn (Σfj = N) of the 
set of possible ground truths, may again be modeled 
as following a multinomial distribution. Here the 
frequencies are pooled over the T k-way pattern dic-
tionaries. Bayesian inferences proceed as in the full 
K-way case, with the same expressions for 

� 

˜ θ j  and 

� 

ˆ θ j . Analogous Bayesian intervals may be con-
structed. It is interesting to note that the sample 
proportion 

� 

ˆ θ j  may be expressed as 

� 

ˆ θ j = Nt
N

f jt
Nt

t:Nt >0
∑ , 

where fjt denotes the frequency of ground truth Hmj 
occurring in the tth k-way dictionary, and 

� 

f jtt∑ = f j . 
Hence 

� 

ˆ θ j  is a weighted average of the k-way sample 
proportions 

� 

ˆ r jt = f jt

Nt
, weighted by the relative sample 

sizes. 
While this approach has been shown to be rea-

sonably effective, it does not explore and compare 
probability estimates for all extractor combinations 
at all values of k. To this end, we have developed an 
alternative approach that does so.  

Lower Bound Maximization  (LBM) 
The essence of the LBM method consists of stepping 
down to the “best” combination of extractors, sub-
ject to a constraint on the reliability of the estimated 
probability of the top-ranking hypothesis associated 
with each combination. The LBM accounts for the 
fact that some combinations may exhibit better per-
formance than others and leverages this fact given a 
pre-specified level of confidence. 

The LBM method uses the lower Bayesian 
bound as a metric to compare hypotheses’ probabil-
ity estimates. Specifically, for each combination of 
base extractors i, the lower bound on the estimated 
probability of hypothesis Hmj, denoted by 

� 

x = l ( i) Hmj( ), is the solution to 

 

� 

I x A j
( i ) , Bj

( i)( ) =α , 
 

where Ix denotes the incomplete beta function, and 
the parameters of the corresponding beta distribution 
are computed in a fashion similar to that described 
in the preceding section. 

The parameter 

� 

α  < 0.5 is pre-specified such 
that 1–

� 

α  indicates the desired degree of confidence 
in a bound. Since higher bounds indicate greater 
plausibility, by comparing the bounds over all levels 
and hypotheses, we effectively are able to rank the 
ground truth probabilities. The LBM optimum 
ground truth hypothesis, 

� 

Hm
* , achieves the largest 

bound, i.e. 
 

� 

Hm
* = argmax

Hmj

max
i
l ( i ) (Hmj )( ). 

  
Empirically, we have found the LBM method to be 
fairly insensitive to the choice of 

� 

α .  
In a similar fashion as stepping down, the 

LBM simultaneously addresses both the quality and 
uncertainty of estimates by assigning heavier 
weights to hypotheses associated with more observa-
tions N(i). Moreover, by introducing a confidence 
metric, it provides an avenue for directly comparing 
the estimates arising from the totality of possible 
extractor combinations.   
 Note that, although the simple k-way decision 
method described above aggregates the votes within 
each level 

� 

k ≤ K , the LBM methodology detailed 
here takes a different approach. Indeed, one could 
imagine implementing the LBM over all levels 

� 

k ≤ K , rather than over all combinations of base 
extractors. We have, in fact, investigated this ap-
proach and have found in empirical tests that when 
data are plentiful, it performs equally well. How-
ever, when data are sparse, the former 
implementation appears to be highly susceptible to 
the influence of weak base extractors. We conjecture 
that the latter approach, as described, has the advan-
tage of disregarding weak base extractors, thereby 
improving performance under sparse data condi-
tions. 

3.2 A Sequential Meta-Entity Model 
Although the marginal models utilized in Sec-

tion 3.1 enhance the PME’s ability to make 
decisions under sparse data conditions, there cer-
tainly remain cases in which even these techniques 
are unsuccessful.  

 
 

Fig. 5. The 2-way pattern representation formed by Extractors 
1 and 2 (B), as well as that of its associated ground truth, 
maintains the sementation of the original 3-way pattern (A), 
despite the lack of disagreement between the two extractors. 
 



Recall from our previous discussion that the K-
way pattern encodes joint information among the 
errors (implicitly, via text structure) as well as 
among the base extractors. In many cases, the rarest 
of meta-entities consist of lengthy patterns, which 
represent a complex sequence of errors and dis-
agreement among the extractors. Moreover, the 
underlying dependencies among extractors and 
among these implicit errors is unknown. Thus, it is 
reasonable to incrementally break down a K-way 
pattern across errors, rather than across extractors, 
so that the patterns arising from a single meta-entity 
are represented by progressively fewer segments. 
We can address this approach via a sequential mod-
eling technique that is often used in other language- 

 
Table 1: Columnwise representation of a pattern and correspond-
ing hypothesis. 
 

 c1 c2 c3 c4 
dm1 2 1 2 1 
dm2 2 1 0 2 
dm3 2 0 0 2 
Hmj 2 1 0 2 

 
based applications6. For example, let us consider a 3-
way pattern dm, together with a hypothesis Hmj, as a 
sequence of columns as shown in Table 1. 

We can decompose the joint probability of the 
pattern (dm, Hmj) in Table 1 as follows: 
 

� 

P(dm ,Hmj ) = P(c1,c2 ,c3,c4 )

= P(c1) P(ct | ct−1 ,...,c1)
t=2

4
∏

, 

 
where each column pattern is dependent upon those 
that precede it. Hence, when a complex pattern is 
encountered that cannot be handled by the previ-
ously described methods, we make the assumption 
that each column pattern is dependent only upon the 
preceding n columns, with 

� 

n < s −1, giving 
 

� 

P(dm ,Hmj ) = P(c1) P(ct | ct−1 ,...,ct−n )
t=2

s
∏ . 

 
Under this framework, we select the hypothesis 

� 

Hm
*  that satisfies 

 

� 

Hm
* = argmax

Hmj

P(dm ,Hmj ) . 

 
                                                
6 Natural language applications lend themselves to such 
models; there is inherent meaning in the order of words / 
characters, and dependencies are often localized. 

Note that taking 

� 

n = 1 in this sequential modeling 
approach yields a standard Markov model, which is 
commonly employed in natural language applica-
tions. We have generally found this small window 
size to be fairly effective, requiring the least amount 
of data to obtain reliable probability estimates. Addi-
tionally, this approach can be applied to meta-
entities segmented as described in Section 2, or 
meta-entities segmented by their individual tokens. 
Both approaches have performed well empirically. 

4 Empirical Studies 
In this section, we present results from three ag-

gregation experiments using the output of (1) 
GATE, a rule-based extraction tool [11]; (2) Ling-
Pipe, an extraction tool based on Hidden Markov 
Models (HMMs) [12]; (3) Stanford Named Entity 
Recognizer (SNER), based on CRFs [13]; and (4) 
BALIE, an extraction tool that utilizes unsupervised 
learning [14]. These experiments were carried out 
using two publicly available annotated data sets, 
MUC6 (Wall Street Journal) and MUC7 (New York 
Times), as well as a small operational data set called 
TAI consisting of 40 annotated documents (contain-
ing approximately 700 ground truth entities). 

The following studies compare the performance 
of the PME where stepping down is implemented up 
to n levels, 

� 

n = 0,...,3 (i.e., “PAn”), together with 
the LBM method (“LBM”). In all cases, when a pat-
tern could not be found in the pattern dictionary 
after stepping down or LBM was employed, we util-
ized the Sequential Modeling algorithm to determine 
a winning hypothesis.  

We focused on two relevant real-world scenar-
ios. The first two involved a test in which the base 
extractors and the PME used identical training data. 
The PME, which requires annotated data for evalua-
tion, necessarily used base extractors trained on less 
data, thus pitting these weak learners against their 
stronger, standalone versions. To this end, MUC6 
and MUC7 were used in a 10-fold cross-validation 
procedure where, for each fold, 10% of the corpus 
was set aside for testing, and the remaining 90% was 
used to train and evaluate the base extractors (via 9-
fold cross-validation). The resulting ten performance 
estimates were bootstrapped (2000 samples) and 
presented in box plots (Figs. 6 and 7). 

The second scenario involved more challenging 
conditions in which the base extractors were not 
trained using representative data. These may include 
cases where (1) proprietary or rule-based extraction 
tools cannot be (re)trained, (2) source text is evolv-
ing over time and continual retraining of the base 



extractors is computationally infeasible, or (3) the 
annotations used to train the base extractors are 
flawed. We simulated these conditions by training 
the base extractors on MUC6 and then evaluating 
their performance and aggregating their output on 
TAI. As in the first scenario, we performed 10-fold 
cross-validation, and the resulting estimates were 
bootstrapped and plotted (Fig. 8).  

4.1 Results 
In the following figures, we have presented our 

results in terms of F Measure, computed in the usual 
fashion, i.e.,  

 

� 

F =
2PR
P + R

, 

   
with the Precision, P, and Recall, R, given by  
 

� 

P =
c + 0.5* pE

E
, R =

c + 0.5* pG
G

, 

 
where G and E are the number of ground truth and 
extracted entities, respectively; 

� 

pG  and 

� 

pE  are par-
tial matches of the ground truth and extracted 
entities, respectively, and c is the number of correct 
extractions (i.e., true positives). This formulation for 
Precision and Recall is motivated by an interest in 
quantifying the usability of extracted data, under the 
assumption that a partially correct extraction is more 
valuable than a miss, but less valuable than a cor-
rectly extracted entity. 

 In addition to F Measure, we have presented 
our results in terms of Exact Match (EM) rates, and 
the combined Miss and False Alarm rates for each 
base extractor and the PME variants. These error 
types are often traded off to address operational re-
quirements, but here we focus on the combined 
impact of both.  

We also assessed statistical significance relative 
to F Measure via a nonparametric pairwise test per-
formed on the results from the original ten folds.  

Figures 6 and 7 present the results generated for 
the first experimental scenario. For both MUC6 and 
MUC7, the base extractors founded upon statistical 
methodologies, LingPipe and SNER, produced F 
measures that significantly exceeded those of GATE 
and BALIE (p = 0.001). In general, we expected this 
behavior, since statistical methodologies often excel 
when they are trained on representative data. How-
ever, the performance of GATE greatly exceeded 
that of BALIE. BALIE was trained on a set of pre-

packaged untagged websites, negatively impacting 
its performance in our experiments.  

Note that, although the EM rate of the LBM 
method was roughly equivalent to the EM rate of 
LingPipe for the MUC6 experiment, LBM produced 
a lower error rate than SNER and, consequently a 
significantly higher F measure (for MUC6, p = 
0.001; for MUC7, p = 0.005).  

Note that for both the MUC6 and MUC7 ex-
periments, stepping down with respect to the number 
of base extractors results in a significantly improved 
F measure (with a p-value ≤ 0.002 in each case). 
These results suggest that the PME benefits from 
stepping down as far as possible before reverting to 
the Sequential Modeling method (i.e., when a pat-
tern cannot be found at the lowest level). However, 
other empirical tests (not shown here) have demon-
strated that this is not always the case. Indeed, 
particularly when data are sparse, we have observed 
that it is sometimes advantageous to interrupt the 
stepping down process and defer the decision to the 
sequential method. 

Our conjecture regarding this observation is that 
the optimal approach is somewhat dependent upon 
the underlying “true” model; i.e., the dependencies 
among the extractors and among the implicit errors 
(the text structure itself). In truth, each approach has 
its strengths and weaknesses, and will perform dif-
ferently under varying conditions. Hence, to remedy 
this situation, one might imagine a technique that 
learns these behaviors and selects the optimal aggre-
gation methodology. 

In the second experimental scenario, we exam-
ine results from the TAI data set. To provide some 
background, the TAI data set was roughly one-tenth 
the size of MUC6 (which is roughly half the size of 
MUC7), and was annotated according to MUC6 
guidelines7. As it turns out, this annotation was 
poorly performed with many underlying true entities 
unidentified. Hence, this situation mimics those of 
the third condition described above (i.e., annotations 
used to train the base extractors are flawed). Specifi-
cally, we may regard the incomplete TAI 
annotations as a relevance-based annotation, in 
which only entities of interest have been identified 
relative to some operational need. In such a case, 
MUC6 turns out to be nonrepresentative, and base 
extractors trained on MUC6 are poorly equipped to 
perform effectively when applied to TAI. 

                                                
7 The annotation was performed by a third party, and was 
apparently poor because the annotator ran out of time. 
Hence, the annotated data were not deliberately flawed. 



The results for TAI are presented in Figure 8. It 
is clear from the plot that, as in other experiments, 
the PME successfully mitigated the decreased per-
formance of the base extractors. Note that GATE’s 
performance remained relatively robust, as it does 
not require training and, hence, is not susceptible to 
the flaws in the training data set. SNER’s perform-
ance degraded significantly, but at least produced 
results comparable to GATE. On the other hand, the 
performance of LingPipe dropped precipitously, 
largely because its error rate increased by nearly an 
order of magnitude. Indeed, its false alarm rate was 

approximately equal to the number of ground truth 
entities (i.e., there was roughly one false alarm per 
ground truth entity). We have observed that our ver-
sion of LingPipe tends, in general, to produce more 
false alarms than other methods. This propensity 
was amplified under these conditions.   

With respect to the PME and LBM in Figure 8, 
their respective performance was not found to be 
statistically different (p = 0.55), but the results again 
indicate that the LBM is competitive with the PME. 

 
Fig. 6. Left to Right: Exact match rates, Miss + FA rates, F measure on MUC6 for the first experimental scenario. “PAn” represents 
the pattern algorithm, using the simple k-way decision stepping down process to step down up to n levels. “LBM” presents results 
from the LBM method, alpha = 0.3. Patterns not found are processed using the Sequential Modeling method. 

 
Fig. 7. Left to Right: Exact match rates, Miss + FA rates, F measure on MUC7 for the first experimental scenario. BALIE and 
GATE performed poorly relative to LP and SNER, much like MUC6. The LBM again uses alpha = 0.3. 

 
Fig. 8. Left to Right: Exact match rates, Miss + FA rates, F measure on TAI for the second experimental scenario. The performances 
of BALIE and GATE were more robust relative to LP and SNER. The LBM again uses alpha = 0.3. 



5 Conclusions and Future 
Work 

In this paper, we have presented a pattern-based 
aggregation methodology – the PME – that implic-
itly incorporates the joint behaviors of extractors and 
their error processes. Through the integration of 
marginal models and corresponding representations 
of extracted data, the PME has proven to be highly 
effective. Specifically, it has been shown to achieve 
statistically significant improvements in the sum-
mary metric, F Measure, over its base entity 
extractors in multiple experimental scenarios and on 
multiple data sets. Even under sparse data condi-
tions, where marginal models become more critical, 
the PME remains highly effective.  

Strategies for integrating across multiple mar-
ginal models under these conditions were also 
presented and their relative performance compared. 
One such strategy—the simple k-way decision—
though generally effective and straightforward, 
makes the decision to step down based only upon 
the absence of a pattern in the pattern dictionary, 
without regard to uncertainty or accuracy across 
levels (i.e., different values of k). As a consequence, 
decisions may sometimes be made by few or highly 
variable data. 

An alternative approach to the k-way decision, 
the LBM method, is able to account for the uncer-
tainty across the various extractor combinations. 
Specifically, this method selects an optimum hy-
pothesis according to a Bayesian lower bound metric 
appropriate and applicable across all of the combina-
tions. As a result, it is competitive with the best-
performing PAn algorithm in each of these empirical 
studies relative to F Measure.  

Notably, both of the methods presented for 
stepping down require that a parameter be specified 
for optimal performance. Specifically, the k-way 
decision requires the selection of the minimum level 
k, while the LBM method requires that the parame-
ter α be specified. However, our studies have 
generally shown that the LBM method is fairly in-
sensitive to the choice of α, and for the k-way 
decision, the choice of k = 1 as the minimum level is 
frequently the most effective.  

Although the PME is capable of adapting to 
sparse data conditions, maintaining high perform-
ance in the presence of such a challenge is not a 
simple issue to address. Future work will include 
sensitivity studies to evaluate the impact of data 
sparseness. However, this is only one of many chal-
lenging conditions that may be encountered in a real 
world operational setting.  

In text applications, a wide variety of meta-
entities are observed. These meta-entities can be 
distinguished by structural features derived from 
their underlying patterns of base extractor text. 
Other research we have performed has demonstrated 
that the effectiveness of different aggregation algo-
rithms can be linked directly to these characteristic 
features. Consequently, our future focus will be the 
development of even more effective and robust ag-
gregation systems. In particular, we will investigate 
systems that can determine, via state-of-the-art ma-
chine learning methods, the algorithms and 
parameters that are optimal given specific opera-
tional conditions and meta-entity features, and thus 
can assign meta-entities to the most favorable algo-
rithms accordingly.  
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